污污的视频在线观看 I 自拍视频区 I 国产在线一 I 超级碰在线观看 I 农村妇女精品一区二区 I 尤物网在线视频 I 久久精品资源 I 毛片直接看 I 国产3区 I 黄色网炮 I 日本在线视频免费 I 美国特级片 I 亚洲免费综合 I 中文字幕在线观看视频免费 I 国产精品夜夜夜爽阿娇 I 欧美干干干 I 男生插女生下面免费视频 I 又黄又爽一区二区三区 I 污污在线播放 I 国产美女性生活视频 I 久久9966 I 扒开jk护士狂揉免费 I 伊人春色欧美 I 成人v精品蜜桃久久一区 I 日韩电影免 I 欧洲精品码一区二区三区 I 九色亚洲 I 外国性调教视频 I 91精品国产综合久久小美女 I 久久久99精品成人片中文字幕 I 国产精品毛片更新无码 I 一区二区亚洲欧美在线 I 婷婷五点开心六点丁 I 国产毛片a高清日本在线 I 国精产品一线二线三线av I 亚洲美女一级 I 国产成一区二区 I 一级成人网 I 午夜精品久久久久久久99水蜜桃

Wuxi Gotele Metal Products Co., Ltd : CN EN
Home >>News >>News of Construction and Building

TYPES OF ARCH BRIDGES


The origins of the use of arches as a structural form in buildings can be traced back to antiquity (Van Beek, 1987). In trying to arrive at a suitable definition for an arch we may look no further than Hooke’s anagram of 1675 which stated ‘Ut pendet continuum flexile, sic stab at continuum rigidum inversum’ – ‘as hangs the flexible line, so but inverted will stand the rigid arch’. This suggests that any given loading to a flexible cable if frozen and inverted will provide a purely compressive structure in equilibrium with the applied load. Clearly, any slight variation in the loading will result in a moment being induced in the arch. It is arriving at appropriate proportions of arch thickness to accommodate the range of eccentricities of the thrust line that is the challenge to the bridge engineer.

Indeed, even in the Middle Ages it was valued that brick work curves carried on basically as gravity structures, for which geometry and extent directed tasteful request and dependability. Compressive quality could be depended upon whilst rigidity proved unable. Based upon experience, numerous exact connections between the range and curve thickness were created and connected effectively to deliver numerous exquisite structures all through Europe. The development of the railroad and waterway frameworks prompted a blast of extension building.

Brickwork curves turned out to be progressively well known. With the development of the Coalbrookdal Bridge (1780) another period of curve scaffold development started. Before the end of the nineteenth century cast iron, fashioned iron lastly steel turned out to be progressively prominent; just to be tested by ferro bond (strengthened cement) when the new century rolled over.

During the nineteenth century analytical technique developed apace. In particular, Castigliano (1879) developed strain energy theorems which could be applied to arches provided they remained elastic. This condition could be satisfied provided the line of thrust lay within the middle third, thus ensuring that no tensile stresses were induced.The requirement to avoid tensile stresses only applied to masonry and cast iron; it did not apply to steel or reinforced concrete as these materials were capable of resisting tensile stresses.

Types of arch bridge

There are many different types and arrangements of arch bridges. A deck arch is one where the bridge deck which includes the structure that directly supports the traffic loads is located above the crown of the arch. The deck arch is also known as a true or perfect arch. A through-arch is one where the bridge deck is located at the spring line of the arch. A half-through arch is where the bridge deck is located at an elevation between a deck arch and a through arch. A further classification refers to the articulation of the arch. A fixed arch implies no rotation possible at the supports, A and B. A fixed arch is indeterminate to the third degree. A three-hinged arch that allows rotation at A, B, and C is statically determinate. A two-hinged arch allows rotation at A and B and is indeterminate to one degree.


HomeTelProductsContact
CN EN